

4TH INTERNATIONAL OFF-GRID RENEWABLE ENERGY CONFERENCE & EXHIBITION

Developing quality infrastructure for renewable mini-grids

International Renewable Energy Agency

in collaboration with IEC and ARE

Which **instruments** do we have to mitigate technical risk, attract investment and public acceptance, and meet expectations by all stakeholders in a USD trillion market?

Gaps in QI for mini grids

A major gap is **QI for the overall mini grid system.** Currently QI is isolated, and oriented to each technology type or specific functionality!

Adjustment of AC standards (plugs, sockets, grounding, overvoltage/current, fault detection)

Standardisation of DC voltages, installation guidelines and certifications. This will reduce uncertainty and barriers for contractors.

Development of new standards and testing specifically targeting **safety, protection and power quality** to mitigate any negative perception.

Cooperation between the various stakeholders to obtain a comprehensive and universally applicable QI

Relevant for minigrids

Stepwise approach based on market context

- Develop a standards committee
- Research international and regional QI to aid in-country planning

MARKET ASSESSMENT STAGE

- Establish an industry association
- Develop initial QI and market support plans

MARKET MATURITY STAGE

- Require accreditation for test laboratories, certification bodies, training institutes,
- and inspection bodies
- Engage in and maintain international QI

MARKET CONSOLIDATION STAGE

- Establish the organization structure used for testing and certifying products
- Implement published web-accessible ratings database
- Participate in regional and international standards-making groups to help advance QI

- Train certified practitioners
- Develop dedicated unaccredited test laboratories
- Develop equipment testing and certification standards based on international standards

International Renewable Fr

SSIRENA

Quality Infrastructure for

Renewable Energy

elines for Policy Maker

Using QI in country regulations for mini-grids

Puerto Rico Regulation on Microgrids.

After hurricane Maria in 2017, Puerto Rico looked to implement more resilient energy systems in their communities.

The 2018 regulation defines 'renewable microgrids' as those that can generate 75 % of their energy from renewables. It identifies the applicable codes and standards.

Below, the Commission establishes the list of Codes and Standards with which all microgrids must comply. It remains the responsibility of each microgrid owner and operator to ensure that its microgrid system is in compliance with any and all Codes and Standards that may be applicable to it.

- 1. Latest National Electrical Code;
- 2. Latest National Electrical Safety Code;
- 3. IEEE Standard 1547-2014;
- 4. IEEE P2030.2, P2030.7;
- 5. IEC 61850-7-420; Power Utility Automation
- 6. IEC/TS 62898-1 and 62898-2; Guidelines for microgrid projects planning and specification
- Other examples: USA, Tanzania

Explore INSPIRE and get engaged in the work of patents and standards

Free online platform International Standards and Patents in Renewable Energies(INSPIRE) More than 400 international standards available for all types of RE

Access INSPIRE at: http://inspire.irena.org

Find here a video on how to use INSPIRE

Filters	
Search in title and abstract	
storage	
Technology group	
₽ Search	
Aspects covered	
₽ Search	

Technology Group

We found 25 entries:

IEC 60041 ed3.0 : Field acceptance tests to determine the hydraulic performance of hydraulic turbines, storage pumps and pump-turbines

Abstract:

Specifies methods for any size and type of impulse or reaction turbine, storage pump or pump turbine. Determines whether the contract guarantees have been fulfilled and deals with the rules... Read More

Normative references: You can find the normative references on the standardization body's web site. Use the link below.

Body: IEC | Ref.-No: IEC 60041 ed3.0

Technology: Hydro | Publication: 11/30/1991 | Aspect: Testing, Sampling and Analysis | Status: Active | More: IEC Website

IEC 60609-1 ed1.0 : Hydraulic turbines, storage pumps and pump-turbines - Cavitation pitting evaluation - Part 1: Evaluation in reaction turbines, storage pumps and pump-turbines

Abstract:

Provides a basis for the formulation of guarantees applied to cavitation pitting for reaction hydraulic turbines, storage pumps and pump-turbines. It addresses the measurement and... Read More

Normative references:

IEC 60193, Hydraulic turbines, storage pumps and pump-turbines – Model acceptance tests IEC TR 61366-1, Hydraulic turbines, storage pumps and pump-turbines – Tendering documents... Read More

Body: IEC | Ref.-No: IEC 60609-1 ed1.0 Technology: Hydro | Publication: 11/24/2004 | Aspect: Installation | Status: Active | More: IEC Website

IEC 60805 ed1.0 : Guide for commissioning, operation and maintenance of storage pumps and of pump-turbines operating as pumps

Abstract:

Applies to storage pumps and reversible pump-turbines of all types, especially to large units coupled to electrical motor-generators.

Normative references:

You can find the normative references on the standardization body's web site. Use the link below

Patents

Home

Standards

CONNECT WITH OTHERS

Quality Assurance

Interested in RE patents?

Learn about the patent application process and browse IRENA's reports on patent developments

Read More

Learn about RE standards

Networking

Contact us

Information on standards development and project application

Read More

News and Events

Extending the Frontier of PV Reliability IRENA at the World Future Energy

Quality Infrastructure: Develop, Control, Cost and Benefit

Networking and more

Get in contact with developers and find reports on the topics

Read More

RECORDED WITE Copyright © 2017 IRENA - International Renewable Energy Agency. All rights reserved. Terms and Conditions SCREENCAST O MATIC

<u>QI for solar thermal</u> and <u>small wind</u>, as well as a general guideline on <u>QI for policy-makers</u>

Standards for Offshore Wind

<u>Grid codes</u> requirements for variable renewable energy

Forthcoming: QI for Mini-grids

Download all the publications at www.irena.org/publications

IRENA undertakes **regional analysis and workshops** for regulators and policy-makers in countries. As an example, the recent Forum done for <u>the Latin American region on solar PV</u>. Or in Asia with the Asian Development Bank and IEC

QI for mini grids technologies is still in an early stage, QI for the overall find grid system is missing

- When drafting regulations referring to QI, rely on pioneer cases and stakeholders to assess the need and application of a regulatory framework
- Facilitate the path to a national quality infrastructure by issuing guidelines, incentives and studies, possibly with international help
- When promoting a market innovation to establish an industry-leading position, make sure to include QI.
- Pro-actively develop regulations by stimulating and supporting innovative projects and monitoring quality issues
- Represent national interests in international technical standardisation committees and possibly establish mirroring national committees to be in line with international standardisation efforts

Back up

USA National Electrical Code: new article about DC mini grids.

California and Hawaii: new installations require inverters to provide grid support or smart inverter functions. (UL Test Standards)

Tanzania Energy and Water Utilities Regulatory Authority: Latest mini grid regulatory framework allows:

-Mini-grids at multiple locations can acquire a **single license** (> 1 MW) **or registration** for mini-grids using the same technology (<1 MW);

- Allow grid-connected mini-grids to **operate in islanded** mode when power to a previously isolated mini-supply is not available from the main grid;

- Clarity and credibility on the compensation calculation for distribution assets when the main grid connects grid.

Event

Hurricane Sandy blackout led to costs of up to **\$65 billion**, up to 60% of backup diesel generators failed for critical facilities

Poor power quality is estimated to cost Canadian businesses about **\$1.2 billion annually** in lost production

Half-day power outage at Hartsfield-Jackson Atlanta International Airport, costs between **\$25 million to \$50 million**

With QI mechanisms...

Renewable mini grids with **islanded capability and properly tested** can decrease these costs.

Enhanced **testing and monitoring** can help to solve this issues.

A more **distributed architecture** of its power supply reliability would have avoided at least a portion of these costs. Cost standardisatio n committee USD 138 K

Cost Testing Lab

USD \$2-30 M

Photo Source: Time, Gresham Smith and Partners

QI for Mini grids	 Starting point IRENA Innovation Outlook: Mini grids Consider Mini grids functionalities QI elements Type of Systems
QI for Mini grids of the Future	 Cost/Benefit → Quantitative indicators (e.g: savings in costs, infrastructure investment vrs revenues,) On-the-ground case studies
Strategies and integration in policy frameworks	 Include the QI component in policies Step wise methodology Clear messages for different context of markets Policies, regulations and codes referring to QI components

Title

- Text
- Text

4TH INTERNATIONAL OFF-GRID RENEWABLE ENERGY CONFERENCE & EXHIBITION

31 October - 1 November 2018 | Singapore

Organised by

