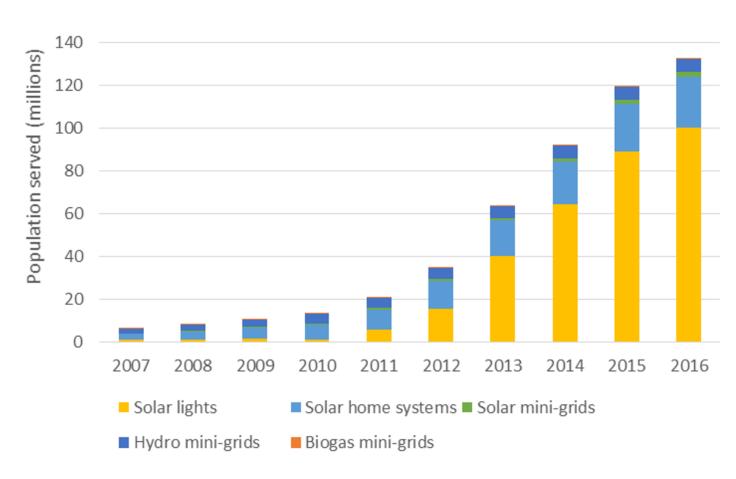


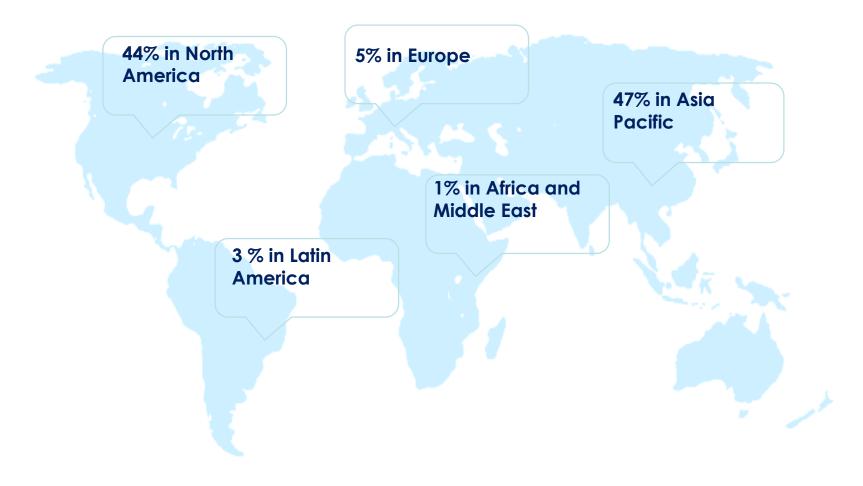
4TH INTERNATIONAL OFF-GRID RENEWABLE ENERGY CONFERENCE & EXHIBITION

Innovation and quality infrastructure for off-grid solutions


Roland Roesch, Deputy Director IRENA Innovation and Technology Center

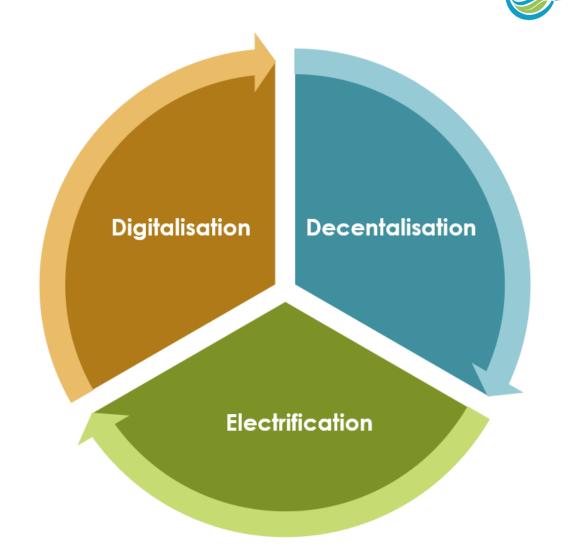
Renewable solutions for energy access

- Some 1.1 billion people without electricity access today
- ~ 130 million served by RE systems:
 - 100 M solar lights
 - 24 M solar home systems
 - 9 M through mini-grids
- 50 250 GW potential to hybridise existing diesel generator capacity,
 12 GW on islands
- 1 million telecom towers in South
 Asia and Sub-Saharan Africa



Source: IRENA (2018) OFF-GRID RENEWABLE ENERGY SOLUTIONS

Renewable mini-grids market



Great untapped potential in Africa and Latin America

Off-grid innovative solutions propelled by three trends

- Decentralisation. Wind and PV is largely centralized today but distributed generation notably rooftop PV, ~ 1% of all electricity generation today – is growing bringing new flexibility opportunities at demand side
- Digitalisation. Key enabler to amplify the energy transformation by managing large amounts of data and optimizing systems with many small generation units
- Electrification. It plays in two ways, may decarbonize end-use sectors through renewable electricity and, if done in a smart way, become a flexibility source to integrate more renewables in power systems

Innovation Outlook: Renewable mini-grids

TECHNOLOGY DEVELOPMENT

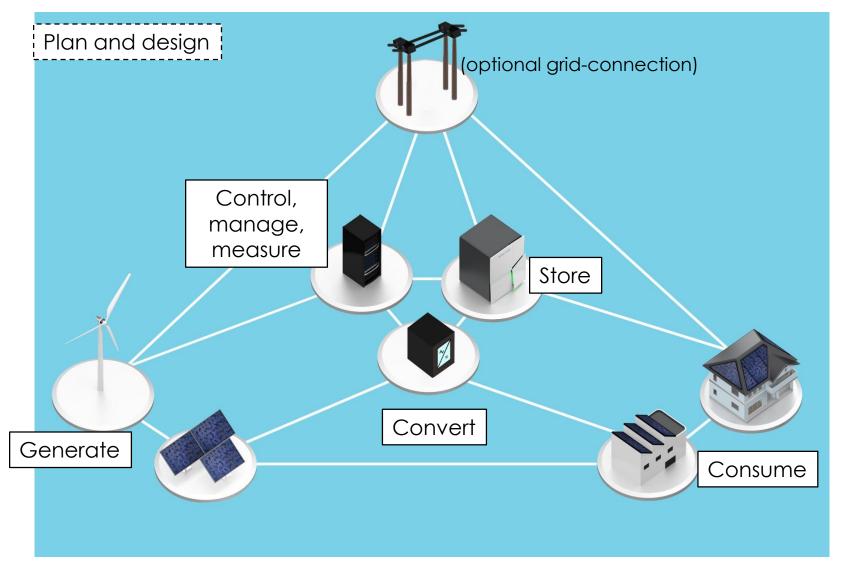
- Autonomous mini-grid systems supplying basic services are widely deployed. Interconnected mini-grids are still emerging
- Deployment concentrated in East Asia and North America. Great potential in Africa and Latin America
- Ground-breaking improvements are under way, particularly in control systems and energy storage – Cost reduction in batteries, artificial intelligence for control systems

IMPACT OF INNOVATION

- Cost reduction: 60% reduction in the next two decades (LCOE ranging between 19 – 35 USD cents/kWh in 2035)
- Increased share of RE in hybrid systems (from 60% to close to 100% as optimal RE share)
- Mini-grids filling the niche market between SHS and grid extension
- Mini-grids providing resiliency services for main grids
- Technology enabling new business models, e.g. facilitating role of aggregators

Forthcoming IRENA report on QI for Mini-grids in collaboration with IEC and ARE

- 1. Brief on the market status and costs
- 2. Quality gaps in mini-grids functionalities
- 3. Costs an benefits of QI deployment
- 4. Needed QI in the future
- 5. Strategies to develop QI
- 6. QI in policy frameworks



Mini-grid Functionalities

Summary of gaps in standards and quality control for future mini-grids

Plan and desian

Generate

Control,

manage,

measure

Incorporate **QI and monitoring mechanisms**since the planning and
design

Harmonization of **IoT**-related standards (hardware, cloud, security, industry, privacy) preferably at international level (vs today's multiple mostly private/proprietary standards)

Systemic approach for **cybersecurity**

Need for standards and regulations on **data** collection

International standards for seamless transition between **grid-connected and islanded operation**

Clear interconnection regulations

Consume

(optional grid-connection)

Store

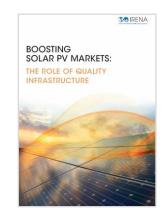
Convert

QI Needs

Harmonized standards & test procedures of EVs and charging equipment

Power to X testing

DC mini-grids: Adjustment AC standards and DC voltages standardization.

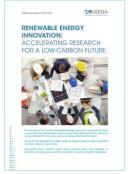

Prosumers: transaction safety, performance and cost reporting standardisation

IRENA Innovation and quality work

Innovation Outlooks

Quality
Infrastructure
Series

Innovation reports



Innovation Landscape Report for the Power Sector Transformation

INSPIRE: IRENA's online platform for standards and patents

Thank you

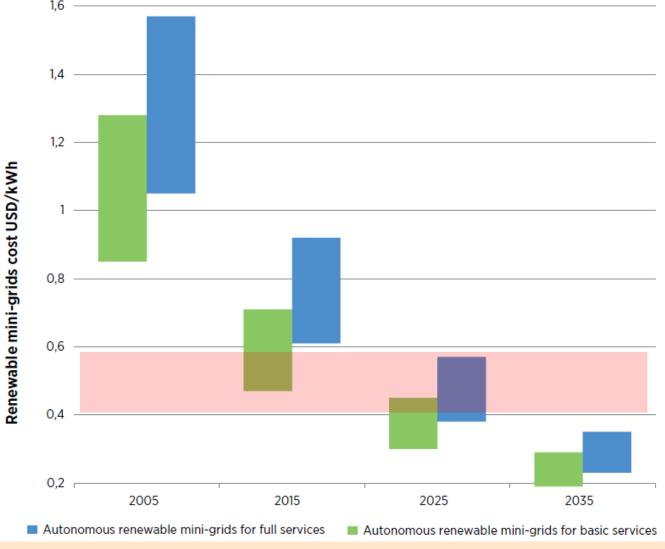
Download report for free at: http://www.irena.org/publications

Back up

Deployment today

Limited	Pilots	Emerging	Mature
•			

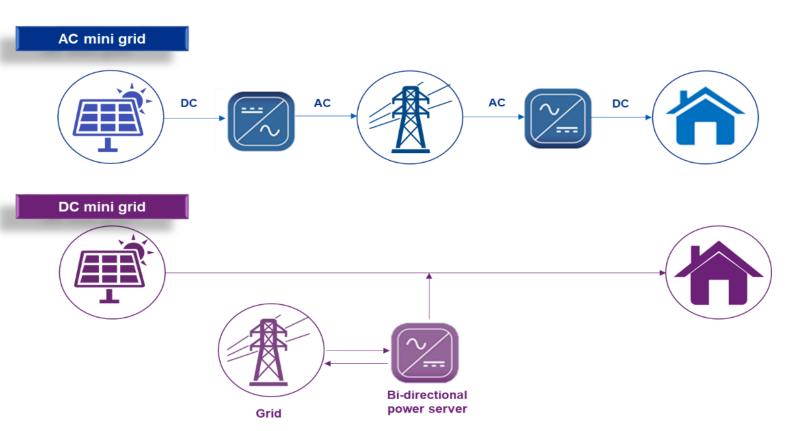
Region	Autonomous Basic		Autonomous Full		s Full	Interconnected Community	Interconnected Large Industrial
Canada and USA			•			<u> </u>	<u> </u>
Caribbean, Central America, Mexico							
South America				0			
Europe							
North Africa				0			
Sub-Saharan Africa							
Central and North Asia		<u> </u>					
East and South Asia							
Middle East							
Oceania							
Antarctica							


Off-grid
(autonomous)
mini-grids more
mature than grid
connected
(interconnected)
mini-grids

Innovation making renewable mini-grids competitive

Unsubsidised cost ranges for renewable mini-grids from 2005 to 2035 for a 100% renewable energy community system

Opportunities for innovation


		Impact				
PLAN AND DESIGN		Cost	Reliability	Ease	Environmental	
1	1 Standardised planning and design		**	****	**	
CONTROL, MANAGE, MEASURE (CMM)						
1	More intelligent controls	***	***	****	**	
2	Improved communications and standards		***	****	*	
3	Improved metering and monitoring		***	****	***	
4	4 Simplify connecting equipment together		*	****	*	
ST	ORE					
1	Use less expensive, more abundant and less resource-intensive materials	****	**	*	***	
2	More robust, lower-maintenance technologies to reduce life-cycle costs for storage	***	****	***	**	
3	Improvements in long-term storage capability		**	**	****	
4	Improvements in high power output capability		***	**	***	
CC	DNVERT					
1	Lower capital costs of converters		*	**	*	
2	Combine diverse function into inverters		**	****	*	
3	Improve efficiency, particularly at partial load		**	*	***	
4	More converter options for diverse renewable mini-grid markets	**	**	****	*	
CC	DNSUME					
1	Increased commercial availability of efficient end-uses	****	*	**	****	
2	Better user tools for adapting consumption to energy supply (DSM)	****	**	***	***	

Innovative Low Voltage Direct Current (LVDC) mini-grids

LVDC mini-grids

Source: IRENA (2016) Innovation Outlook: Renewable Mini-Grids

DC reduces up to 10% the energy losses

Innovation Landscape for Renewable-Power Integration

Enabling Technologies

Battery storage

- Utility-scale battery
- Small-scale battery

Electrification

- EV smart charging
- Power-to-heat
- Power-to-hydrogen

Digitalisation

- Internet of Things (IoT)
- Artificial intelligence and big data
- · Blockchain

New grids

- Supergrids
- Renewable-based mini-grids

Business Models

Empowering consumers

- Virtual power plants (VPPs)/ Aggregators
- · Peer-to-peer trading
- Energy as a service

Enabling renewable energy supply

- Community-shared ownership
- Pay-as-you-go plans

Market Design

Wholesale markets

- Increase time and space granularity in energy markets
- Redefine balancing market products
- Innovations in capacity markets
- Regional markets

Retail markets

- Allow distributed energy resources to participate in markets
- Price-based demand-response programmes
- Net billing schemes for self-consumption

System Operation

Accommodating uncertainty

- Advanced renewable energy generation forecasting
- Innovative operation of hydro plants

Innovative DER operation

- Expanded role of DSOs in operating distribution systems
- DSO as market facilitators and DSO-TSO co-ordination
- · Virtual power lines

- 27 Innovations grouped under four dimensions
- Which solutions are suited to which context?

Innovation in control systems for mini-grids requires improved communication standards

Opportunity for Innovation	Cost	Reliability	Ease	Environment
More intelligent controls	***	****	****	**
Improved communications and standards	**	***	***	*
Improved metering and monitoring	**	***	****	***
Simplify connecting equipment together	**	*	***	*

STATE OF THE ART TODAY

- Specialized and expensive controls
- Non-economic, non-predictive controls
- Moderate plug-and-play capability
- High utility interest, but limited to pilot projects
- Numerous competing standards
- One to two hours renewable resource prediction with high accuracy

FUTURE

- Low cost modular controls
- Economic and predictive controls
- Seamless plug-and-play capability
- Standard interconnection terms for utilities
- Common, open-source standards
- Day-ahead renewable resource prediction with high accuracy

