IOREC: International Off-Grid Renewable Energy Conference & Exhibition Nairobi, Kenya 30 September - 1 October 2016

Economics of rural Microgrids

Xavier VALLVÉ

Trama TecnoAmbiental (TTA), Barcelona

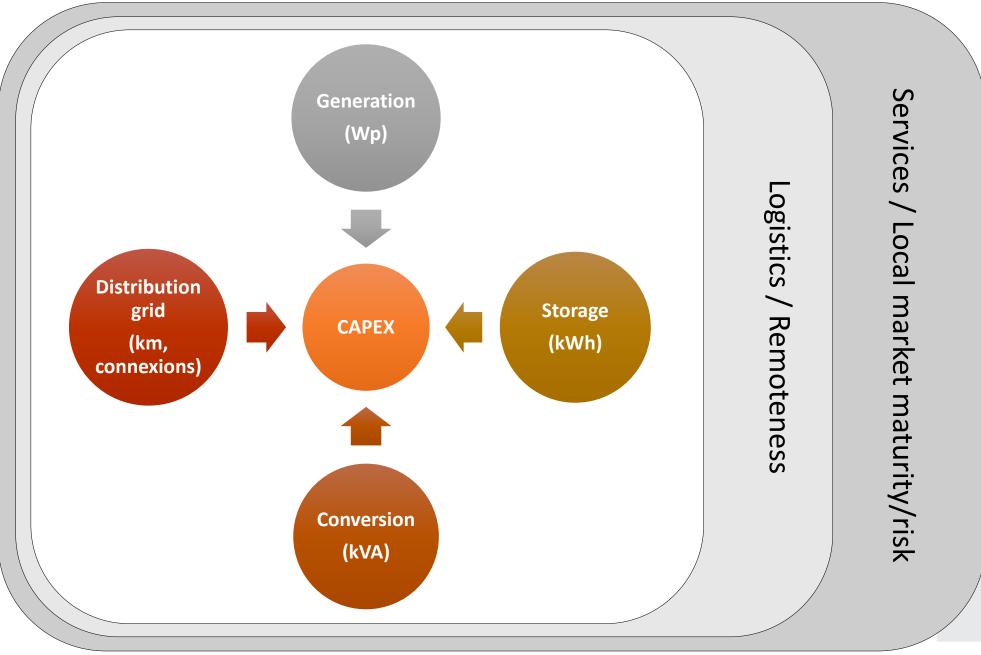
xavier.vallve@tta.com.es

Trama TecnoAmbiental (TTA)

- SME Founded in Barcelona en 1986
- Independent consultants in distributed renewable energy
- Consultancy, engineering, research, project management, social aspects, financial, ...
- Since 1987: PV electrification practitioners
- Design and project management of RE-hybrid power plants and micro grids for rural electrification
- Southern Europe, Africa, Latin America, Oceania ...
- Public, private and multilateral clients

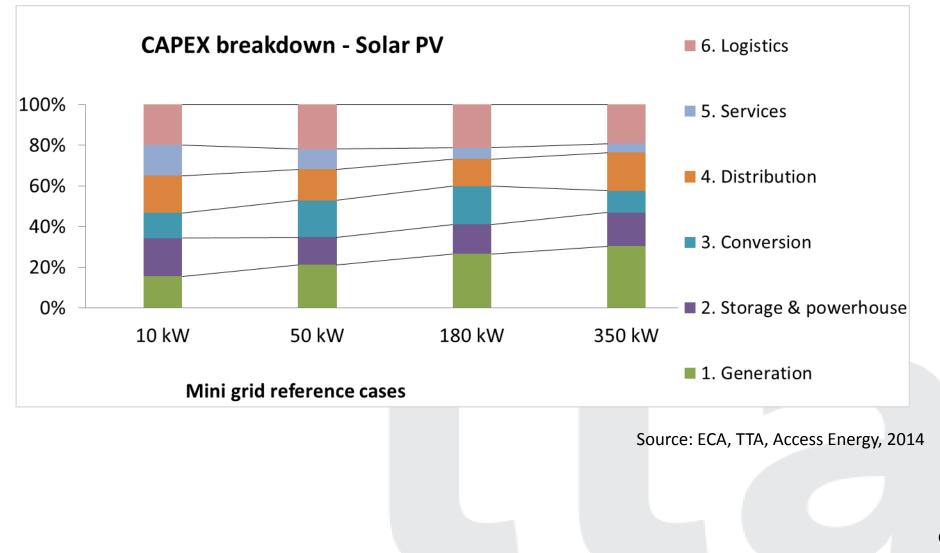
Member of:

MGS Background



Factors affecting hybrid microgrid costs (< 1 MW)

- Grid connected vs autonomous
- Economies of scale
- Demand, load profile and RE sources => engineering design
- Quality of service ie Tiers ESMAP
- Market maturity
- PV fraction:


Category	Indicative PV annual energy fraction	Indicative PV rated capacity/load ratio	Characteristics
Low	< 20%	< 50%	No batteries No control
Medium	20%-50%	> 50%	Batteries with autonomy 1-2 days Large genset
High	> 50%	> 150%	Batteries with autonomy > 2 days Small gensets

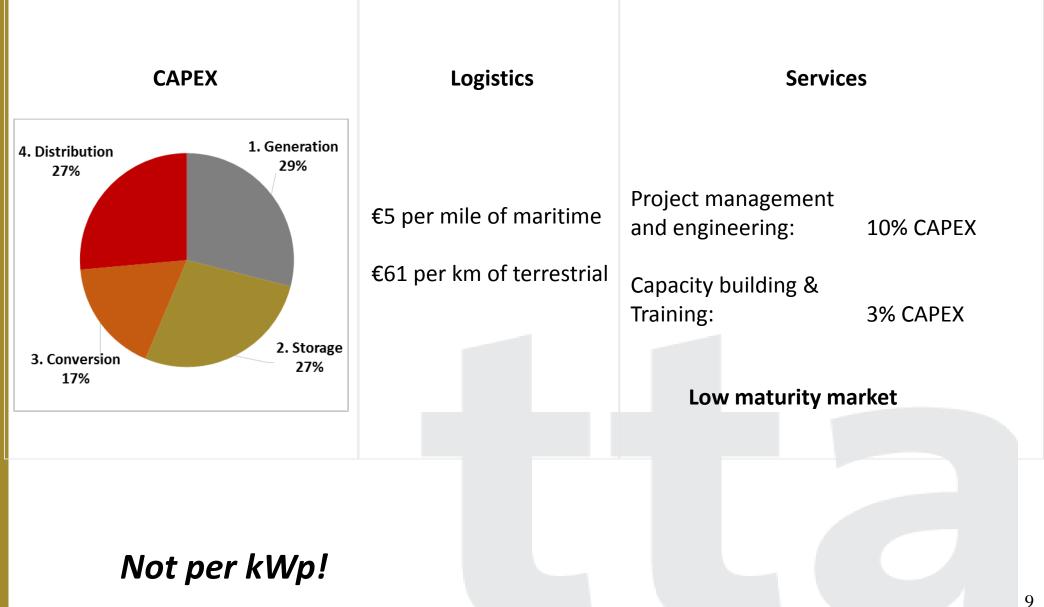
Cost structure – capital costs

5

CAPEX according to capacity

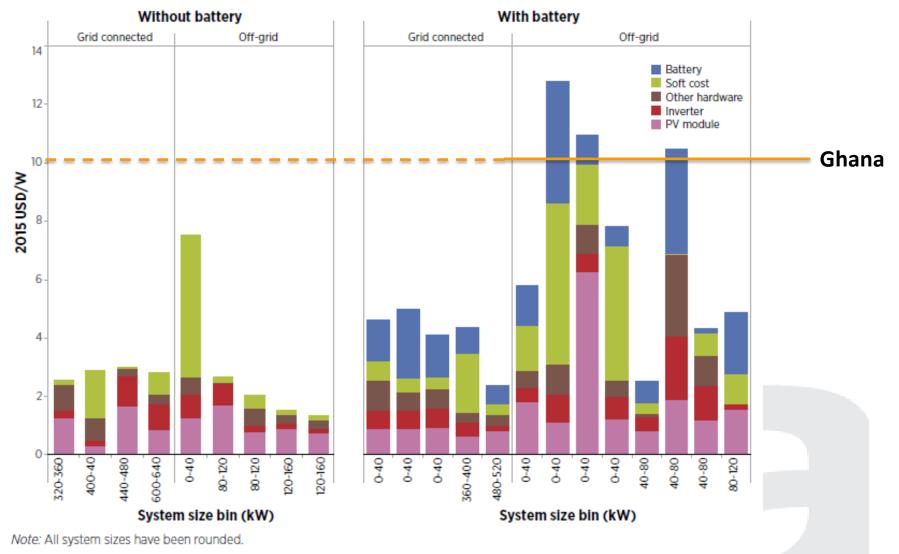
Fixed O&M costs

Component	Description	Comments/Differentiating Factors	
Personnel (administrative and technical staff)	Salaries for manager and technical operator Security guard	Depends on the management scheme	
Billing costs	Administrative cost of billing consumers	Depends on tariff structure (energy, flat rate, periodicity, etc)	


Variable O&M costs

Component	Description	Comments/Differentiating Factors	
Replacements and spare parts	Equipment that needs to be replaced during the lifetime of the project and equipment for minor reparations	stock availability, equipment lifetime, quality of operation	
Fuel	Fuel consumed by back-up diesel generator	Depends on plant design and operating conditions (demand, RE resources)	

CAPEX breakdown


Category	Unit		
1. Generation			
PV modules (incl. structure & cabling)	kWp		
Wind turbine incl. Tower	kW		
Hydro turbine incl. Penstock and civil works	kW		
Regulators (incl. protections)	kW		
Labour	% category		
2. Storage and powerhouse			
Battery (incl. cells, cabling, protections)	kWh		
Monitoring and control system	unit		
Technical room (powerhouse with fence)	m²		
Labour	% category		
3. Conversion			
Battery inverter incl. cabling	kVA		
Genset	kVA		
EMS Energy Management System	unit		
Labour	% category		
4. Distribution			
LV distribution grid (incl. poles, cabling and protections)	m		
MV distribution grid	m		
Transformers	kVA		
Public lighting	pole		
Smart meters, service connections, internal wiring	# customers		
Labour	% category		
5. Services			
Project Management and engineering	Market maturity		
Capacity building (technicians and beneficiaries)	Market maturity		
6. Logistics			
International shipping costs (maritime), incl. customs	Miles from port of departure		
Local transportation costs (road)	Km from port of destination		
Storage of equipment	% CAPEX		
Insurance, security staff	% CAPEX		

Case study – Pediatorkope (Ghana)

Study on microgrid costs

FIGURE 30: SOLAR PV MINI-GRID TOTAL INSTALLED COST AND BREAKDOWN BY COST COMPONENT, 2011-2015

Financial – Economic component \rightarrow Viability!

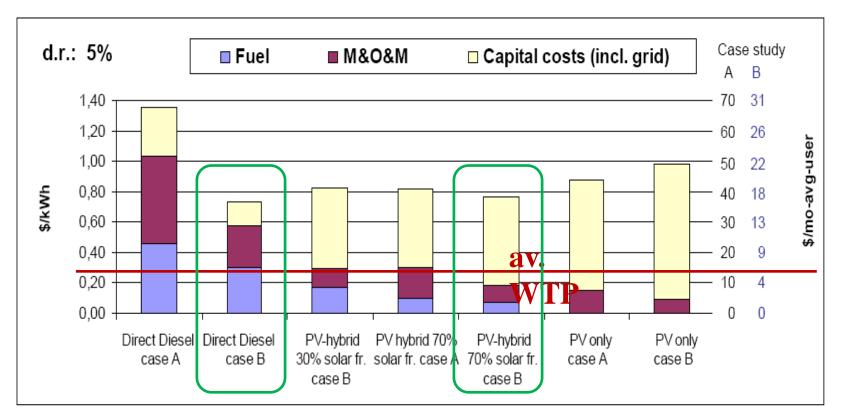
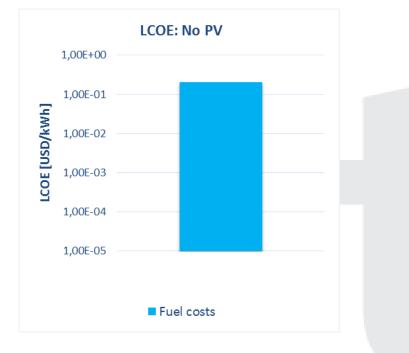


Figure 3.- Breakdown of levelized energy costs in Floreana (case A) and Padre Cocha (case B) at 10% and 5% discount rates. Average kWh cost are acceptable to compare different solutions for one application, but for different systems for different locations and small demands, transaction costs, local management, etc, represent a high fraction of the service costs, and the cost per user must also be assessed.

Source: Arranz-Piera, P. Vallvé, X., González, S. (2006)

Tariffs in Ghana: cost reflective vs grid (2016)


Tariff tier (residential)	EDA (Wh/day)	Power (kW)	Willingness to Pay tariff - O&M and 25%CAPEX (GhS/kWh)	Cost reflective tariff - only O&M (GhS/month)	Grid tariff (GhS/month)
T01	275	0,5	18	10.0	4.2
T11	550	0,5	30	20.0	6.9
T21	1100	0,5	52	40.2	12.3
T31	1650	0,5	74	60.2	17.7
T42	2200	1	100	8.3	33.6
T53	2750	1,5	120	100.4	44.7


Brownfield project: case of a factory (Lebanon)

Intermittent grids: Gensets as backup

Hybridisation of a juice factory with 130 kWp

THANK YOU!

xavier.valve@tta.com.es

www.tta.com.es