IOREC conference Session7: *"Innovative off-grid renewable energy system design"* Accra, Ghana 1-2 November 2012

DESIGN CRITERIA FOR SOLAR PV RURAL MICRO GRIDS FOR VILLAGE ELECTRIFICATION

Xavier Vallvé

- Trama TecnoAmbiental, Barcelona, Spain -

xavier.vallve@tta.com.es

Trama TecnoAmbiental (TTA)

- SME Founded in Barcelona en 1986
- Independent Consultants in distributed Renewable Energy

Alliance for Rural

Electrification

- Consultancy, engineering, research, project management, social aspects, financial, ...
- Since 1988: Off-grid rural electrification practitioners
- Design and Project management of RE-hybrid micro-power plants and micro grids for rural electrification in southern Europe, Africa, Latin America, Oceania ...

Member of:

Reference: individual autonomous RE micro plants Southern Europe

Catalonia and Balearic Islands, Spain (1988)

Structure of Hybrid Micro power plants-AC coupling

All electricity generators are connected to the AC line.

AC generating components may be directly connected or may need a AC/AC converter to enable stable coupling.

A bidirectional master inverter controls the energy supply for the AC loads and battery charging.

DC loads can be optionally supplied by the battery.

Structure of Hybrid Micro power plants-DC coupling

All electricity generators are connected to a DC bus bar from which the battery is charged.

AC generating components need an AC/DC converter.

The battery, protected from over charge and discharge by a charge controller, supplies DC loads and AC loads through the inverter.

From individual PV hybrid autonomous power plants (AC, DC or combined coupling) to micro-grids

Micro-grid with Solar Generation (MSG) - definition -

- Electricity generation based on renewable energies or mixed (RE + genset)
- Steady village-level electricity service, offering also the possibility to be upgraded to either more capacity, clustering or interconnection
- Installed capacity up to 100 kW (according to IEC)
- Distribution line in Low Voltage
- Single or 3-phase grid
- Operational scheme

Pioneer PV rural micro grid

Andalucía, Spain (1994)

STATE OF THE ART: Typical Design approach

- > Demand analysis, segmentation and load management is a key issue
- Technical solutions with high RE penetration (>70%) are a challenge because the intermittence of energy generation
- Renewable Energy multi source micro-power plants with electrical configuration DC based, AC based or combined at ELV (extra low voltage)
- Quality of engineering and components to achieve long lifetime and lowest levelized cost (LCOE)
- Technical specifications and best practices from Pilot Projects, IEC technical specifications, IEA PVPS Task3 and Task11 recommended practices, etc
- Sinusoidal single phase LV distribution
- Design of metering concept and demand management impacts on business model

Comparison of PV Individual and Micro Grids

Technology	Advantages	Shortcomings
Small RE individual plants	 High flexibility. Easy to move and share. Consumption user managed on a day to day basis 	 Limited to their specific use. Maintenance / repairs not safeguarded. Limited surge power capacity. Monitoring individual plants can be expensive and difficult.
Multi user Solar Grids (MSG)	 Improved quality and surge power Efficient and cheaper maintenance Easily expandable Lower investment for compact villages. Telemetry can be economic for monitoring plant's status. 	 Shortages affect everyone If genset backup: functioning depends on availability of fuel Social rules required to distribute energy availability. Local management required.

> <u>Challenge</u>: sharing the energy available without conflicts

Need innovative approach to energy distribution and metering!

VISION: Universal electrification-individual plants and micro grids under one invoicing concept

Load related challenges in rural micro grids

Social Aspects:

- to identify the different energy needs (basic, productive, deferrable, etc) and to ensure a resource distribution without conflicts

> Individual energy demand management :

- to encourage the consumption during surplus RE generation periods
- to manage each user's energy in an independent and flexible way
- to guide users' energy consuming habits to optimize energy management

> Techno-economic long term sustainability:

- to reduce uncertainty on invoicing and unpaid fees
- to ensure that batteries, inverters etc. will operate within design range

Innovative concept: Energy Daily Allowance (EDA)

- Traditionally in conventional grid connection: users pay for consumed kWh
- In autonomous electrification with RE: Key aspect is the constrain on available energy
- > In RE electricity, user should pay for availability not for the consumed energy
- > Tariff based on the **Energy Daily Allowance** (fee for service \neq prepayment)
- Clearer and easier financial planning for operator and for client
- It reduces transaction costs because of flat fees

Electricity Dispenser/meter

Single phase electric meter with **dispenser** functions

Main Current Switch (40A):

- Energy Daily Allowance (EDA) management according to the contracted tariff
- Virtual storage of saved energy: 6 x EDA
- Programmable power limitation

Auxiliary Smart switch (5A) :

for deferrable loads

Smart RFID card for:

- Tariff management
- Energy swapping between users
- Invoicing management

> Certified energy meter

The EDA algorithm

As an analogy, we can imagine the **dispenser** as a buffer water tank

The tank gets a constant trickle inflow from the micro-grid proportional to the contracted **energy daily allowance**

The tank empties as energy is consumed

When the consumption is equal to the fill up rate we are in balanced consumption

The tank has a capacity equivalent to 3 days of **energy daily allowance**

You can use this energy anytime but you cannot store more units than the tank's capacity

modes of operation according to real time plant condition

- > Demand management in indication according to energy status in PV plant
- > Can influence on the consumption in real time by applying a pricing factor

Mode	Description	Factor	Activation
Normal	EDA and power to rated values	1	Energy in the in the microgrid is between normal values
Bonus	Consumed energy price lower than "normal" price	0,5	PV controller is curtailing
Restriction	Consumed energy price higher than "normal" price	2	Battery state of charge is too low
Power Limitation	Reduced Maximum power limit	0,8	Inverter Power output is lower than contracted value

Assessment of the aggregate demand: example

+

Simplified PV generator sizing

$$DD_{total} (kWh) = \sum_{i} DD_{i} = 90 \ kWh$$

$$PR = 0,6 \qquad fu = 0,8 \qquad h_{p} = 5,2 \ (December)$$

$$P_{FVSTC} = 90 * 0,8 * 1,2 / (0,6 * 5,2) = 27,7 \ kWp$$

Case studies of PV micro grids in African countries

- ➢ MSG in Morocco
- MSG Senegal
- ➢ MSG in Cabo Verde

Example MSG (Multi user Solar Grid)

Akkan, Morocco, Africa

Technological Configuration – Multiuse building ("Casa de la Luz")

Technological Configuration – single phase LV distribution grid

Performance assessment after 1 year

Performance assessment after 1 year

Once More than once Never Don't know

■ Perfectly ■ Sufficient ■ No ■ No, not my business

Example MSG

Diakha Madina, Senegal

PV GENERATOR					
PV installed capacity	3.150 Wp				
PV Module model	PW750 75 Wp 12V				
Nº PV modules	42				
Orientation/Inclination	0º S / 10º S				
PV Area	46 m²				
ENERGY					
Rated Energy Output (Wh/day)	4.803				
Irradiation (GpHp)	5 HPS				
Month of design	December				
BAT	ITERY				
Nº cells	24				
Battery type	Tudor 6 OPzS 420				
Capacity (C100)	672 Ah				
Autonomy	4 days				
CHARGE C	ONTROLLER				
Regulation capacity	4.000 Wp				
Mode of charge control	MPP Tracker				
INV	ERTER				
Input / Output voltage	48 V DC / 230 V AC				
Nominal Power	3.600 W				
DC/DC Converter (12 V)	10A máxima de corriente				
Harmonic distorsion	< 2,5%				
PUBLIC LIGHTING					
Number	2				
Type of lamp	70 W / electronic ballast				
WATER PUMP					
Power of the pump	1.100 W				
Flow	5m³/h				
Depth	49 m				
Height of the tank	7 m				
Tank capacity	20 m ³				
BACK-UP GENSET					
Nominal power	4,2 kW single phase				
Fuel	Diesel				

Example MSG

Monte Trigo, Cape Verde

Site: Monte Trigo, 17º01'N , 25º19'O , 00 m s.l.

Monte Trigo: the village

- One hour by boat from nearest village
- ➢ 600 people aprox., fishing is main income generating activity
- > 80 houses (60 connected), school, medical centre, kindergarten
- hostel for visitors, several small shops, connection for telecommunications and TV
- Deferrable load: ice making
- PV electricity since February 2012

Monte Trigo energy demand segmentation

Total Aggregate Demand (EDA tot) = Σ EDAi = 90kWh/day Utilization Factor (Fu) : 0,80 Future Demand Forecast (Di): 20%

Design Demand (DD): EDA tot * Fu * (1 + Di) = 85 kWh/day

	Domestic "very low"	Domestic "low"	Domestic "medium" and community buildings	Domestic "high"	Shops	Ice maker machine	Public lighting
Туре	 Low power devices Low and rigid demand profile 	 Low power devices Refrigerators Low demand profile 	•Like previous type but higher number of hours usage	 Higher power devices Refrigerators Iron Variable profile 	 High power devices Refrigerators Iron Frezer PC Variable profile 	•1000W machines for ice making (2 units)	 Public lighting 20 lamps - 70W sodium two power level programmable
Maximum Power	P ≤550 W	P ≤550 W	P ≤1000 W	P ≤1500 W	P ≤ 1500 W	P ≤ 1500 W	683W ≤ P <1400W
EDA (Energy Daily Allowance)	E ≤ 825 Wh	E ≤ 1100 Wh	E ≤ 1650 Wh	E ≤ 2200 Wh	E ≤ 3300 Wh	E ≤ 4400 Wh	E <5000 Wh

Tariffs and financial sustainability

Balance between users' willingness to pay and economic sustainability Flat monthly tariff according to EDA level, power limit and virtual energy storage

Financial Sustainability				
Initial investment	75% UE, 25% project partners (private, public)			
Tariff scheme	Flat monthly fee based on EDA concept			
Fee decision	Ongoing discussion with National Regulator			

LEVEL	EDA (Wh)	Power Limit (kW)	Max. Energy storage capacity (EDA)	Adopted monthly fees (Eur)	Proposed monthly fees (Eur)
T0301	825	0,55	6	8,51	11,52
T0401	1100	0,55	6	10,85	14,58
T0602	1650	1,1	6	15,84	21,12
T0802	2200	1,1	6	20,81	27,64
T1203	3300	1,65	6	30,47	40,30

Added value solution: PV pergola

Added value solution: Engage the users

Technical solution: mechanical room

Technical solution – Single phase LV distribution

Technical solution – User interface

Effects of Electricity Dispenser's signal on consumer habits

Normalized Performance indicators

- Stable daily aggregate load (red bars)
- ➢ Battery state of Charge (red line) always between 85% and 95%

Economic analysis: revenue certainty is useful for financial planning

Discount Rate

Initial investment 25%

Thanks for your attention!

xavier.vallve@tta.com.es

