Dutch Small Wind Turbines

Wind turbines for rural electrification

Small and medium wind for off grid electrification

IOREC, November 2nd 2012 Balthasar Klimbie

At the Embassy in The Hague:

DSWT

In line with its new strategy and to facilitate the deployment of grid-connected renewable energy technologies, the EC intends to support projects developed and sponsored by Ghanaian institutions (public and private) and partnerships. It is envisaged that the EC will support as many projects as funds are available subject to meeting the quality requirements.

IOREC, 2nd November 2012 Balthasar Klimbie

PROGRAMME OBJECTIVE, KEY FEATURES AND PRIORITIES

Focus DSWT

- Offer reliable small and medium sized (5-500 kW) wind turbines
- Focus on decentral and/or hybrid systems
- Start of the DSWT franchise
- Consulting services

Todays Content

- Micro course wind energy
- What is small and medium wind
- Project examples
- Advantages
- Challenges
- Order intake

IOREC, 2nd November 2012 on Balthasar Klimbie

Different sizes of wind turbines

DSWT

• Small is less than 15m diameter or 50 kW

• Medium is 15-55m or 50-1000 kW

• Large is bigger than 1 MW

Power in the wind

DSW1

$P = \frac{1}{2} * rho * A * V^3$

- P: power
- Rho: air density (depending on Temp & altitude)
- A: rotor surface (1/2 * pi * R²)
- V: wind speed (in meters/second)

Measuring wind speed is not always difficult

Figure 14 Griggs Putnam Index of Deformity (from US Dept of Energy)

Look for good sites

DSWT

Alliance for

Electrification

Rural

Average wind speed and output

Wind speed [m/s]	Energy output [kWh/m2]
4	150
5	300
6	500
7	750

Size matters

Size [kW]	Size [m2]	kWh at 6 m/s
1	8	4000
5	20	10000
250	700	350,000

DSWT

Size [kW]	FOB price [€/W]	Installed price [€/W]	Electricity price [€/kWh]
1	5	10	0,40
5	3	5	0,25
250	1,5	2,5	0,1

IOREC, 2nd November 2012 ion Balthasar Klimbie

Schoondijke test site

IOREC, 2nd November 2012 Balthasar Klimbie

Results Schoondijke test site

DSWT

Maand	Windsne Iheid	Turby	Montana	WRE060	Ampair	Passaat	WRE007	Swift	Airdolphi n	Skystrea m
maart	3,6	4.522	46.405	7.798	4.726	9.837	9.966	6.442	2.583	37.218
april	4,1	29.641	232.741	36.112	24.350	44.312	40.572	13.669	11.767	163.178
mei	3,8	20.841	298.417	49.198	32.310	58.927	58.512	30.511	14.077	207.540
juni	3,3	0	224.056	29.526	25.842	41.404	34.878	31.123	7.729	144.160
juli	3,5	0	219.836	32.146	23.534	42.270	36.756	32.334	7.546	142.692
		55.004	1.021.455	154.78 0	110.762	196.750	180.684	114.079	43.702	694.788

 Alliance for

 Rural
 IOREC, 2nd November 2012

 Electrification
 Balthasar Klimbie

Check for certification!

DSWT

Component	International standards and explanation
Turbine	IEC 61400-2: Design and safety requirements IEC 61400-11: Procedure for acoustic emission measurement techniques IEC 61400-12: Power performance measurements
	Other known and respected standards are designed by Microgeneration Certification Scheme (MCS) (UK, overall certification including factory inspection) and AWEA (American Wind Energy Association).

Table 3. International standards for small wind turbines. Source: ARE, 2011

Rural electrification by the use of a 1 kW wind turbine for battery charging in Mauretania

DSWT

IOREC, 2nd November 2012 Balthasar Klimbie

Telecom electrification with a Airdolphin 1 kW wind turbine. Hybrid wind/PV site, AC connected.

Water desalination and purification by the use of a 5 kW wind turbine. This unit makes 3000-4000 liter of clean drinking water per day.

Telecom electrification with Bergey 10 kW wind turbine in Kenya.

IOREC, 2nd November 2012 Balthasar Klimbie

Example Medium size turbine 1

Rural electrification with wind/diesel system of WES 80 kW in Indonesia.

DSWT

IOREC, 2nd November 2012 Balthasar Klimbie

Example Medium size turbine 2

Rural electrification in Australia with Vergnet 275 kW wind turbine.

DSWT

IOREC, 2nd November 2012 Balthasar Klimbie

Advantages

Under good conditions low costs:

Technology	Typical Characteristics	Typical Energy Costs (U.S. cents/kWh)
Mini-hydro	Plant capacity: 100-1,000 kW	5-12
Micro-hydro	Plant capacity: 1-100 kW	7-30
Pico-hydro	Plant capacity: 0.1-1 kW	20-40
Biogas digester	Digester size: 6-8 cubic meters	n/a
Biomass gasifier	Size: 20-5,000 kW 8-12	
Small wind turbine	Turbine size: 3-100 kW	15-25
Household wind turbine	Turbine size: 0.1-3 kW	15-35
Village-scale mini-grid	System size: 10-1,000 kW	25-100
Solar home system	System size: 20-100 watts	40-60

Table 1. Status of renewable technologies, characteristics and costs. Source: REN21, 2010

Why choose small and medium wind?

• Cost competitiveness and quick cost break-even in favourable natural conditions.

- Easy to integrate in (existing) mini-grids fed with diesel. Hybrid wind-diesel systems provide higher quality, lower costs, and are a more reliable and sustainable solution than diesel-only systems.
- Allow, in combination with such applications as solar to develop a 'whole-year-round' solution.
- The perfect solution not only to generate enough power for feeding and developing small businesses, but also to increase the synergies with growing sectors like telecommunications.
- Contrary to most other sources of energy supply, wind energy is not subject to theft and is less vulnerable to vandalism.

Challenges

DSW

- Promoting the use of wind energy
- •Getting wind data and finding the best spot
- •System design, making synergy out of different technologies
- •Building capacity, one project is not enough

Certification is the road to sustainable projects

IOREC, 2nd November 2012 n Balthasar Klimbie

Conclusions

- Wind energy can be a low cost source of electricity
- Different sizes for different applications
- Needs more attention as an alternative

Rural IOREC, 2nd November 2012 Electrification Balthasar Klimbie

Thank you for your kind attention.

Klimbie@dutchsmallwind.com

