Developing Quality Infrastructure for Off-grid Systems

International Renewable Energy Agency

IOREC 2016 30 September 2016 Nairobi, Kenya

Why standards for RET?

Relevance of Standardisation for Renewable Energy Technologies

IRENA

Market Support – Access to sources for financing

"A principle of project finance is that debt should not bear the risk of the technology."

In order to minimize the first technology-related risk, modules have to be certified in accordance with international standards. Unfortunately, it is common knowledge that a successful certification is not enough for predicting the expected lifetime of a module: a failure in a certification process only suggests that a long life is unlikely. Certification is therefore a necessity but not sufficient.

Source: Holz, F. "The myth of PV module manufacturers' bankability in project financing" Deutsche Bank AG

Policy Incentives linked to Quality Requirements

USA

- 14 states: Contractor Licensing Requirements for Renewable Energy

- 4 States: Equipment Certification Requirements for Renewable Energy

Source: http://www.dsireusa.org/

Functionalities

Mini-grids categorisation

		Stand-alone		Grids			
	DC		AC	AC	AC/DC		
System	Solar lighting kits	DC Solar home systems	AC Solar home systems; single- facility AC systems	Nano-grid Pico-grid	Micro-grid, Mini- grid	Full-grid	
	Off-grid						
Application	Lighting	Lighting and appliances	Lighting and appliances	Lighting, appliances, emergency power	all uses	all uses	
User	Residential;Com munity	Residential;Com munity	Community; Commercial	Community;Com mercial	Community;Com mercial;Industry		
Key component	Generation, storage, lighting, cell charger	Generation, storage, DC special appliances	Generation, storage, lighting, regular AC appliances. Building wiring incl. but no distribution system	Generation + single-phase distribution	Generation + three-phase distribution + controller	Generation + three-phase distribution + transmission	

Communication standards within electricity supply

Source: Adapted from Appelrath et al., 2012

Developing Quality Infrastructure for RET

International Standards for Small Wind Turbines & Solar Water Heaters

IEC Standard	Standard Title	Status
IEC 61400-2	Wind turbine – Part 2: Small wind turbines for turbines less than 200 m ²	3 rd Revision 2013 2 nd Revision 2006 1 st Revision 1995
IEC 61400- 11	Wind turbine generator systems – Part 11: Acoustics noise measurement techniques	2006
IEC 61400- 12-1	Wind turbines – Part 12-1: Power performance measurements of electricity producing wind turbines	2006
IEC 61400- 14	Wind turbines – Part 14: Declaration of apparent sound power level and tonality values	2005
IEC 61400- 22	Wind turbines – Part 22: Conformity testing and certification	2010

IRENA (In Press) "Quality Infrastructure for Small Scale RET"

Identification of the Standard	Title of the Standard Solar Thermal Products and Components	Status/Comments				
Solar Thermal Collectors						
ISO 9806: 2013	Solar energy - Solar thermal collectors - Test methods	Recently revised and published. Considers performance and durability				
Solar Thermal Systems						
ISO 9459-3: 2005	Solar heating - domestic water heating systems - Part 3: Outdoor test methods for system performance characterization and yearly performance prediction of solar-only systems	Only performance. Daily time steps. Does not treat auxiliary interactions				
ISO 9459-4: 2013	Solar heating - domestic water heating systems - Part 4: System performance by means of component tests and computer simulation	Only performance. Simplifications discussed in Annex C				
ISO 9459-5: 2007	Solar heating - Domestic water heating systems - Part 5: System performance characterization by means of whole-system tests and computer simulation	Only performance. Dynamic System Test Method				

PV Standards

Country	PV Module	Inverter	Design and Installation	Commissionin g	Performance and Operations	Grid Code Related	Off Grid Specific	Utility Scale Specific
International / IEC	IEC 61730, and IEC 61215 or IEC 61646 as applicable	IEC 62109- 1/2 IEC 62093 (Qualific ation)	IEC 62548 ² (Primary) and IEC 60364 series	IEC 62446	IEC 61724 Future IEC 62446-2 (2017)	Country specific, but grid function testing per IEC 62116, IEC 62910	IEC 62257 Series for off grid and rural electrificatio n	Future IEC 62738 (2016)
USA	UL 1703 UL 61215 / IEC 61646	UL 1741, UL 62109	National Electrical Code (NEC) Article 690	Not specified, multiple industry group recommende d practices	ASTM E2848, multiple industry recommended practices	IEEE 1547 and regional/state requirements	N/A	Future NEC Article 691 (2017)
Australia	Same as IEC	AS/NZS 4777, AS/NZS 3100	AS/NZS 5033	Same as IEC	Same as IEC	AS/NZS 4777	AS 4509	
China ³	National standards & IEC		GB 50797-2012	Same as IEC	Same as IEC			

http://inspire.irena. org/Pages/standard s/search.aspx

International engagement in standardization process

IEC TC 82 - PV

Number of regions with important potential for RET are underrepresented

IEC TC 114 - Marine Source: www.irena.org/inspire

IEC TC 88 - Wind

ISO TC 180 – Solar Thermal

Implementation requires a Quality Infrastructure

Source: Physikalisch-Technische Bundesanstalt

Holistic View - Quality Covers the Whole System, not Hardware only

Implementation of Quality Schemes covers not only equipment but whole systems Including Design, Installation, O&M services

TÜV Rheinland analyzed the faults in 125 largescale solar: "Every other fault that we detect is due to incorrect installation. Poor or even dangerous cable routing, incorrect foundation or installation of the support frame, faults in the connections or grounding and so on. One in five systems exhibits (mainly safety-relevant) faults that are so severe that immediate action is required. And a further 10% of systems have a large number of defects,"

Source: TÜV Rheinland "Quality Monitor – Solar 2013: Cost Pressure Increases Risks to Quality of Solar Systems"

IRENA (2013) "International Standardisation in the Field of Renewable Energy"

Quality infrastructure should be affordable for the local market

IRENA "Quality Infrastructure for Small Scale RET"

Proposed approach to develop quality infrastructure - Incremental approach

SMALL WIND TURBINE (SWT) MARKET AND QI STAGES

Increased SWT Quality Assurance

Quality infrastructure to be developed hand-in-hand with country context and market stage for SWH technologies 4,

International Renewable Energy Agency

MARKET MATURITY STAGE

All the QI elements are well-established in this stage yet require maintenance and accreditation by the National Accreditation Body to IEC standards and adhere to international standards

MARKET CONSOLIDATION

5

- · Improve test laboratories
- Continue to provide end-user information
- Develop certification bodies
- Prepare for accreditation

MARKET GROWTH

- Develop test laboratories
- Finalize standards
- Engage and support industry associations
- Consider regional QA schemes
- Begin end-user policy incentives

MARKET INTRODUCTION

3

- Develop practitioner training courses, import control
- Set up demonstration projects
- Develop import control strategy and expertise
- Develop or adopt standards
- Educate the local regulatory agencies

MARKET ASSESSMENT

2

- Develop a QI strategy, incorporating standards, test laboratories, certification bodies for practitioners and hardware. Consider adopting existing standards
- Develop in-country human resources
- Develop market stimulation plan and incentive policy options linked to QA requirements

Supporting countries to develop and implement QI for RET

- Network of partners: IEC, PTB, WWEA, GSC, SolarUnited, SolarPower Europe
- Studies on QI for solar thermal, small wind. Forthcoming PV
- Grid integration: grid connection codes
- Workshops with policymakers and regulators
- Expanding cooperation with IEC and IECRE

IRENA web platform for RE standards and patents: www.irena.org/inspire

INSPIRE - is an interactive platform which facilitates the access to such information by:

- Providing one entry point for information on renewable energy technology (RET) patents and standards for the public interested in RE but nonexperts in standards or patents
- Relating the information to practical applications
- Informing the users on what are and how to use patents and standards for the deployment of RET
- Facilitating a dialogue between the different stakeholders on these topics

Browse RE standards – using keywords or dropdown menus

• Organisation developing the standard and the hyperlinks

LEARN ABOUT RENEWABLE ENERGY STANDARDS

IRENA INSPIRE INTERNATIONAL STANDARDS AND PATENTS IN RENEWABLE ENERGY

Thank you!

Visit us: www.irena.org/inspire

Contact us: <u>inspire@irena.org</u> <u>Fboshell@irena.org</u>